ECG Conference

Matthew Ortman, MD
July 16, 2012
P wave

• Duration
 • 0.08 to 0.12 seconds

• Amplitude
 • <0.25 mV in lead II, <0.1 mV in V₁

• Axis
 • 0° to +75°
QRS

- **Duration**
 - 0.06 to 0.11 seconds

- **Initial forces**
 - Rightward and anterior

- **Main forces**
 - Leftward and inferior

- **Terminal forces**
 - Posterior
QRS

• **Intrinsicoid deflection**
 - <0.035 seconds in V_1 or V_2
 - <0.045 seconds in V_5 or V_6

• **Axis**
 - -30° to 105°
 - ≤40 years: 0° to 50°
 - > 40 years: -30° to 90°

Marriot. 10th ed.
Atrial ‘enlargement’

<table>
<thead>
<tr>
<th></th>
<th>II</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAE + LAE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Marriot. 10th ed.
Left atrial ‘enlargement’
Left atrial ‘enlargement’

• Basics
 • Notched, ‘M like’ appearance in lead II (P mitrale).
 • Terminal deflection in V₁ >0.04 seconds and >0.10 mV.
 • LAE *increases* P wave duration and *shortens* the PR segment.
 • LAE does not typically affect the axis of the P wave, although it may cause a leftward shift that remains within the normal limit of 0° to +75°.

Marriot. 10th ed.
Right atrial ‘enlargement’

Marriot. 10th ed.
Right atrial ‘enlargement’

• Basics
 • Peaked, ‘A like’ appearance in lead II (p pulmonale), most often in patients with CHD and pHTN not due to COPD.
 • Amplitude >0.25 mV in lead II.
 • Amplitude >0.15 mV in V₁.
 • RAE does not affect the duration of the P wave.
 • RAE does not typically affect the axis of the P wave, although it may cause a slight rightward shift that remains within the normal limit of 0° to +75°.

Marriot. 10th ed.
Biatrial ‘enlargement’

Marriot. 10th ed.
Biatrial ‘enlargement’

• Basics
 • Large, biphasic P wave in lead V_1.
 • $V_1 > 1.5 \text{ mV}$ and lead II > 0.12 seconds (wide, notched).
 • Limb leads $\geq 0.25 \text{ mV}$ and > 0.12 seconds (wide, notched).
Sinus rhythm
Left atrial abnormality
Left axis deviation
Left ventricular hypertrophy
General Considerations

• No specific criteria distinguish ‘hypertrophy’ and ‘enlargement’.
• Hypertrophy can lead to myocardial conduction delays, but not to the same extent as bundle branch block.
• Lead V₁ provides the optimal view of competition between the two ventricles.
• Don’t forget to look for atrial hypertrophy to ‘support your case’ for the existence of ventricular hypertrophy.
LVH

• **Romhilt-Estes Criteria**

 • Limb lead voltage criteria
 • Left ventricular strain
 • Left atrial enlargement
 • Left axis deviation
 • QRS duration
 • Intrinsicsoid deflection
LVH

• Romhilt-Estes Criteria
 • Limb lead voltage criteria
 • R or S in any limb lead ≥ 2.0 mV
 • or S in V_1 or V_2 ≥ 3.0 mV
 • or R in V_5 or V_6 ≥ 3.0 mV
 • Left ventricular strain
 • Left atrial enlargement
 • Left axis deviation
 • QRS duration
 • Intrinsicoid deflection
LVH

• **Romhilt-Estes Criteria**
 - Limb lead voltage criteria
 - **Left ventricular strain**
 - ST-T wave opposite direction to QRS
 - *without digitalis* 3 points
 - *with digitalis* 1 point
 - Left atrial enlargement
 - Left axis deviation
 - QRS duration
 - Intrinsicoid deflection
LVH

- Romhilt-Estes Criteria
 - Limb lead voltage criteria
 - Left ventricular strain
 - Left atrial enlargement
 - Terminal negativity $V_1 \geq 0.10 \text{ mV and } 0.04 \text{ s.}$ 3 points
 - Left axis deviation
 - QRS duration
 - Intrinsicoid deflection
LVH

• **Romhilt-Estes Criteria**
 - Limb lead voltage criteria
 - Left ventricular strain
 - Left atrial enlargement
 - *Left axis deviation* $\geq -30^\circ$
 2 points
 - QRS duration
 - Intrinsicoid deflection
LVH

• **Romhilt-Estes Criteria**
 - Limb lead voltage criteria
 - Left ventricular strain
 - Left atrial enlargement
 - Left axis deviation
 - **QRS duration** ≥ 0.09 s
 - Intrinsicoid deflection
• **Romhilt-Estes Criteria**
 - Limb lead voltage criteria
 - Left ventricular strain
 - Left atrial enlargement
 - Left axis deviation
 - QRS duration
 - *Intrinsicoid deflection* in V5 or V6 ≥ 0.05 s
 1 point
LVH

- Romhilt-Estes Criteria
 - LVH 5 points
 - Probable LVH 4 points
LVH

• Sokolow-Lyon
 • $S_{V1} + R_{V5} + > 3.5 \text{ mV}$.
LVH

• Cornell Criteria
 • Males
 • $R_{aVL} + S_{V3} > 2.8 \text{ mV}$.
 • Females
 • $R_{aVL} + S_{V3} > 2.0 \text{ mV}$.
LVH

- **Perugia Score** *(at least 1 of the following)*
 - \(R_{aVL} + S_{V3} > 2.4 \text{ mV} \) in men.
 - \(R_{aVL} + S_{V3} > 2.0 \text{ mV} \) in women.
 - LV strain.
 - Romhilt-Estes score \(\geq 5 \) points.

LVH

- **Miscellaneous**
 - $R_{aVL} > 1.1 \text{ mV}$
 - If LAD present, $R_{aVL} > 1.1 \text{ mV and } S_{III} > 1.5 \text{ mV}$
Ectopic atrial rhythm
Right axis deviation
Right ventricular hypertrophy
• Sokolow-Lyon Criteria
 • $R_{V1} + S_{V5 \text{ or } V6} \geq 1.0 \text{ mV}$
 • IRBBB, RBBB pattern, or ‘qR’ pattern in V_1
 • Right axis deviation, usually $\geq 110^\circ$
 • T wave inversion in right precordial leads
 • RAE

Marriot. 10th ed.
Biventricular Hypertrophy

Marriott. 10th ed.
Biventricular Hypertrophy

- High voltage, biphasic RS complexes in the mid-precordial leads
- Voltage criteria for LVH in the precordial leads with right axis deviation
- Low amplitude S wave in V_1 combined with a very deep S wave in V_2
- Criteria for LVH in the left precordial leads combined with prominent R waves in the right precordial leads.
- LAE, combined with any other criterion suggestive of RVH

Marriot. 10th ed.
Sinus rhythm
LBBB, complete
LBBB

• Basics
 • QRS ≥ 0.12 seconds.
 • ‘QS’ or ‘rS’ in V_1.
 • Broad monophasic R wave in I, V_5, and V_6.
 • No q wave in I, V_5, and V_6.
 • Delayed intrinsicoid (~0.1 second) in V_5, and V_6.
 • *Secondary* ST-T wave changes.
LBBB

• Associated findings
 • Poor R wave progression.
 • Left axis deviation in 70%. *LBBB with leftward axis has a worse prognosis than LBBB with a normal axis*.
 • ‘Rs’ pattern in V_5 and V_6.
 • ‘qs’ pattern in inferior leads, mimicking IMI.
 • There should not be a q wave in V_6; if noted, consider complicated LBBB, e.g. prior ASMI.
Sinus rhythm
RBBB, complete
RBBB

• **Basics**

 • QRS ≥ 0.12 seconds.

 • rsR’ or rSR’ in V_1 and V_2.

 • Intrinsicoid deflection in V_1 >0.05 seconds; sometimes wide R or qR.

 • S wave in leads I, V_5, and V_6.

 • *Secondary* ST-T wave changes.

Marriot. 10th ed.
Sinus rhythm
Left anterior fascicular block
• Basics
 • Left axis deviation (-30° to -90°, usually ≥-45°).
 • Terminal forces are superior and leftward.
 • ‘qR’ pattern in leads I, aVL.
 • ‘rS’ pattern in leads II, III, aVF with ‘S’ in lead III > II.
 • QRS duration normal or slightly prolonged (≤0.120 s).

Marriott. 10th ed.
LAFTB

• Associated findings
 • *Increased* voltage in limb leads.
 • *Decreased* voltage in precordial leads.
 • Small q waves may be seen in V_1 to V_3; the initial vector moves *inferiorly*, away from these leads which are positioned on a higher plane.
 • Deep S wave in V_5 and V_6; the terminal vector moves *away* from the LV apex.
LAFB

• Miscellaneous
 • LAF and RBBB are both supplied by the first septal perforator, hence LAFB + RBBB are often associated with each other.
 • LAFB complicates 7-15% of pLAD infarcts.
 • LAFB can *obscure or mimic* IMI.
 • LAFB can *mimic* ASMI by generating small ‘q’ waves in V₂ and V₃ and poor R wave progression.
Sinus rhythm
Left posterior fascicular block
• Basics
 • Right axis deviation (+90° to +180°, usually ≥120°).
 • Terminal forces are *inferior* and rightward.
 • ‘rS’ pattern in lead I.
 • ‘qR’ pattern in lead III.
 • QRS duration normal or slightly prolonged (≤0.120 s).
 • RVH should *not* be present.

Marriot. 10th ed.
LPFB

• Miscellaneous
• The posterior division of the LBB is short, thick, and supplied by a dual blood supply, so it relatively protected from injury.
• LPFB + RBBB in AMI is associated with a high risk of complete AV block (>40%) and mortality (>80%) during the first weeks after the event.
Sinus rhythm
Left anterior fascicular block
Left ventricular hypertrophy
ST-T abnormalities secondary to hypertrophy
LVH with LAFB

- Low specificity.
- $S_{III} > 1.5$ mV.
- LAE.
- ST-T wave changes consistent with ‘strain’ pattern.
- QRS may be widened.
Sinus rhythm
LBBB, complete
Left ventricular hypertrophy
LVH with LBBB

- Low specificity.
- $S_{V2} + R_{V6} > 4.5$ mV.
- LAE.
- QRS > 0.16 s.
Sinus rhythm
Right axis deviation
RBBB, complete
Right ventricular hypertrophy
RVH with RBBB

- Low specificity.
- R’ > 1.5 mV (>1.0 mV with IRBBB).
- RAE.
- RVH does not typically cause RBBB.